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Numerical Mapping of Arbitrary Domains Using Spectral Methods
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In order to maintain spectral accuracy, the grids on which a physical
problem is to be solved must also be obtained by spectrally accurate
techniques. The purpose of this paper is to describe a method of solving
the quasilinear elliptic grid generation equations by spectral techniques
both in Euclidean {£2) and Riemannian {R?) spaces. A parametric
continuation method is used to generate grids in completely arbitrary
domains. & 1993 Academic Press, Inc.

I. INFRODUCTION

In recent times there is much interest in the use of spectral
methods for the solution of physical problems involving
nonlinear partial differential equations. This trend is more
evident in the area of computational fluid dynamics where,
in some cases, highly accurate solutions are needed to
resolve the flow field. Practical finite difference methods by
their very nature can provide solutions to a certain order of
accuracy which may not be sufficient in the computations of
some flows, e.g., transitional flows and simulated turbulent
flows. In contrast, the spectral methods provide a capability
of obtaining rapidly convergent solutions, with a further
advantage of practically no dissipation errors. A mono-
graph by Gottlieb and Orszag [ 1] and a recent book by
Canuto ¢¢ al. [2] provide a thorough grounding in the state
of the art of the spectral methods.

The main thrust of the spectral methods has been
inhibited due to a lack of their application to field problems
involving complicated geometries. Most of the problems
which have been solved by using spectral methods have
usually been restricted to simple geometries. In some dif-
ficult geometries, the domain decomposition method has
been used, Ref. [2]. A fairly general and automatic method
of numerical mapping technique is needed which can
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maintain the same level of accuracy as the accuracy of the
method used in solving the physical problem, e.g., the
Navier—Stokes equations. In this context, it is important to
point out that when solving a physical problem on a com-
plicated geometry, the transformed physical equations
require a knowledge of various partial derivatives, metric
coefficients, etc. of the coordinate system, Since these quan-
tities must also be computed with spectral accuracy, the
available numerical mapping techniques used in the finite
difference solutions cannot be used for spectral solutions.
Thus, as was first pointed out by Orszag [3], a computa-
tional procedure to generate coordinates is needed which is
capable of maintaining spectral accuracy. The order of
accuracy problem has been addressed by Koomullil in an
exhaustive manner [4].

It is the purpose of this paper to develop the necessary
methodology for generating curvilinear coordinates for
arbitrary domains in two- and three-dimensional Euclidean
E? and E’ spaces and also in two-dimensional surfaces
embedded in E? space, i.c., R*>-space. The method is based
on the elliptic partial differential equations of the Poisson’s
type [5, 6]. Since this transformation technique leads to
quasilincar PDEs, a proper method has to be developed to
overcome the problem of non-constant coefficients. In this
research it has been shown that a “parametric continuation
method” as advocated by Keller [ 7] coupled with a time
stepping scheme works quite efficiently. Among the various
time stepping schemes the simplest, due to Euler, has been
adopted in this paper.

Numerical grids have been generated using appropriate
spectral methods for a variety of simply and doubly con-
nected domains in £2 and in simply connected domains in
R?, using the equations proposed by Warsi [8]. Generation
of coordinates in E? seems to be a direct extension,
although with more computational and programming
effort. In this paper, a general formulation of grid genera-
tion using elliptic partial differential equations, including alt
the forcing functions, has been given, e.g., refer to [9].
However, to demonstrate the use of spectral methods for
generating grids we have considered only the case when all
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252 KOOMULLIL
the forcing functions are set to zero. Even if the control
functions are not set to zero, the grids generated by spectral
methods will be spectrally accurate. Though it has not been
reported here, the authors have studied the effect of control
functions and have found that a desired distribution of
collocation points in the logical plane can be obtained by
choosing appropriate control functions without any
decrease of grid smoothness. These topics are beyond the
intent and purpose of this paper and, therefore, the results
concerning the use of control functions, grid resolution, and
the important topic of the accuracy needed for the calcula-
tion of the metric coefficients in relation to the accuracy of
the Navier-Stokes soiutions will form the subject of a future

paper.

II. GRID GENERATION

In this section, we briefly summarize the elliptic grid
generation equations both for the three-dimensional
Euclidean space (£°*) and the two-dimensional Riemannian
space (R?). The grid generation equations are taken as a set
of time-dependent Poisson’s equations in E° and the
Laplace/Beltrami equations in R% As has been discussed in
the Introduction, the purpose of adopting the time-depen-
dent grid generation equations is not to solve for time-
accurate coordinate systems but to develop a parametric
continuation method (refer to Keller [7] and the references
therein) for applying the spectral technique to generate
grids for arbitrarily shaped bodies. Thus, in the context of
the parametric continuation method, a parameter o as
defined below is considered as the continuation parameter.
The aim is to use a time stepping numerical procedure to
drive the solution to a state of parametric independency, or,
towards a steady state.

For the purpose of model development, we shall use the
suflix notation (refer to Appendix B for definitions). As has
been shown in various publications, e.g., [9, 6], the elliptic
grid generation equations in the transformed plane both in
E? and E* stem from the vector equation

gr ;+ (Vx5 r =0, (2.1)

where r=(x, y. z). We now take the elliptic grid generation
equations as a set of time-dependent Poisson’s equations

¢ dx*

Vit = gipt 4 S5
&y g ot

(2.2)

where g=det(g,), P; are the user specified control
functions, and a dimensional constant ¢ has been
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introduced so as to have non-dimensional curvilinear
coordinates. Substituting (2.2) in Eq. (2.1), we obtain

a k
Prier, o=, (2.3a)
ot
where the operator & is
&= ipk 0
=D+ gg'Fy ol
, {2.3b)
D=gg¥——01
&8 dx*t ox’
For non-steady coordinates
x*=xMr, 1), T=1
and
r=r(x%1), =t
Following the analysis given in [10], we have
or
o "
. ax* 53
=T, 7 (2.3¢)

Using (2.3¢) in Eq. (2.3a) and writing ¢ = 1/c, we finally
have

—=%r,

- (2.4)

which are three equations in E* for r=(x, y, z) and two
equations in £72 for r = (x, y).
Writing x! =&, x*=p, x*=¢, and
g'=0G\/g, g7=GCylg £7=0yz,
g2 =G.g, g°=0Gs/g, g9=G4/z,

we have

g = Gla{f + GZaﬂr,' + G3555 + 26465,, + ZGS acc + 266(3"'5

+P‘6§+P28,,+P35:, (2.5a)
where, for k=1, 2, 3,
Pr=G, PY+ G, PY, + Gy P,
+2G, P5, + 2GS P54+ 2G, P, {2.5b}
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Both (2.5a), (2.5b) are greatly simplified for the two-
dimensional (E?) case in which

Gi=g8xn Gi=gu, Gi=gngn—(gn) =g

G4= —&12> GS=05 G6:05

and the derivatives with respect to { are zero.

For a curved surface embedded in E° the space is R” in
which, as shown by Warsi [ 8], the basic equations stem
from

£yt (AN,

(k‘”+k‘”)n‘” (2.6)

where the superscript {v) means the surface x*=const.
In general, the Laplace/Beltrami equations taken as
coordinate generators are taken as

. ¢ oxf
A9 = g P+ — —

5o (2.7)

Since the two-dimensional Riemannian space is embedded
in £* and one of the coordinates x* = const, then

ar

T w

dt

ax®
=T (2.8)
Introducing (2.7) and (2.8) in Eq. {2.6), we obtain

d
& @r—aR, (2.9)
do

where

£=D+G,g"PlYy=

2

= 1ﬂ
b=G.g ox* dxF’
R=(k"+kHG

g = T/C.
Equation (2.9) represents three equations each for x, y, and

z. In particular, for v=3, ie, x*=const, writing x'=¢,
x*=n, and noting that
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G3=311822—(812)2
g =g»/Gs, g'%=—g,/Gs, g7=81/Gs
we obtain
L= g2y0s— 281200y + €110,y + PO+ P20, (2.10a)
PP = BePh g b (2.10b)
P= g22P11 — 2g,2P12+ guPzz.

Note that in (2.10) the metric coefficients depend on all
three physical coordinates x, y, and z, ie.,

ga,ﬁ' =T 4 l’!ﬁ.

To incorporate the capability of one-dimensional control
along the coordinate lines, the control functions of the form
P{, (no summation on k) in either (2.5b) or (2.10b) are
retained and the rest of them are set equal to zero. This is
what has been done in this paper.

IIl, SPECTRAL FORMULATION

En this section, we formulate the problem of solving the
grid generation equations, either Eq. (24) or Eq. (2.9), by
using spectral methods. The choice of the global basis func-
tions in the spectral expansions is dictated by the nature of
the domain in which the grids are to be generated. Thus, for
a simply connected domain, both in £2 and R?, the choice
of the basis functions as Chebyshev polynomials T, (x)
seems to be a judicious one. On the other hand, for doubly
connected domains, a Fourier-Chebyshev expansion is
desirabie due to the periodicity requirement on one coor-
dinate. In the following analysis, we have used a number of
recursive and derivative formulas involving the Chebyshev
polynomials. All such formulas have been collected in
Appendix A. Below, we have considered the formulations of
simply connected domains in E® and R? and of doubly
connected domains in EZ.

Case 1. Simply connected domain in £2 We normalize
the coordinates £ and # to the range (—1, 1) and write the
spectral expansion of r= (x, y} as

r(f.n)= Z Z 4, T,(8) T,(n),

m=0 n=0

(3.1)
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Using Egs. (A.14} and (A.15) for the derivatives, we have

a4, T &) T(n),

1=

0 r=0Q
M N
=2 Z al T (&) Toln),
m=0 n=
A
Tee= 2 Z alO'T,(&) T(n),
m=0 =0

N
Z all T (E) T(n)

M
1){1)
f= 3 Z aldr (&Y T.(n), (3.2)
m=0 n=0
(10} 2 [0)(0)
apo -2 3 pa,
mp=m+1
p+madd
01 030
A== Z qa‘ o)
Hg=n+1
¢ + » odd
1 M
2){0 2 2 Q)o
a0—— Y p(p?—m?)aldO),
mp=m+2
p+meven
1 N
)2 2 2 0)0
afmz(]=_ Z q(q )a( )()
nog=n+2
g + r even
4 N M
(Hn — ((h)(0)
amﬂ Z Z pqapg * (33)

ConCn g=n+1 p=m+1

q+nodd p+modd

As noted in Appendix A, ¢y =2,¢,=1 for r>0.
We now take the metric coefficients as depending on the
previously computed coefficients a,,,, and further that they

are constants in each sweep and having the values g;

(¢,,, 11,,). With this stipulation using (4.2) in Egs. (3.4) and
{A.12), we have

aa(U)(O)

(©0)0)
. = Z@l®),

(34)

where
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M
g(ai{:’i(o)):@[ Z P(P —m Ja(OMOJ
Em p=m+2

P+ meven

M
0)(0
Z paf,,," J]

p=m+1
p+modd

+2P],

Sg N A
12 (0)(0)
- Z Z Pqa,,
CmC" g=n+1 p=m+1
g+rodd p+rmrodd

N
+g“|: Z q(qz_nz)a(mcm
Cn g=n+2 !
o + 1 even
N

IEYTR qaggg;m]. (3.5)
g=n-+1
g+ nodd

Using forward Euler’s method, the parameter-stepping is
achieved by discretizing (3.4) as

all% e + d0) =al0No) + 40 L(a)(a)), (3.6)
where the last term in (3.6) is evaluated through (3.5) by
using the vaiues of g,,, g,,, and g, as available at . For the

actual implementation’ of (3.6) and on the use of other
explicit methods, refer to Section IV.

Case 1I. Doubly connected domain in E° In a
doubly connected domain, we use the Fourier—Chebyshev
expansion as

Mi2~1

rén)= Y Zai.‘;’,i"”E’"’ETn(n),

m=—Mj2 n=0

where now 0<¢g2r,—1<y<1, and i=./—1. Again
using Eqs. (A.14) and {A.15), we have

(3.7)

031) _ (030
alm = z galo©),
ng=n+1

g+ nodd

N

1
02y — ___
amn - Z

nog=n+2
q + neven

glg* —n’) a“’"“’, (3.8)

2 N
(LY _ 5 (3)(0})
al M =im— Y qalX"

n q=r!+l
q+r add

It is implicitly understood that all the coefficients appearing above and
in the succeeding equatiocns are the discrete coefficients as defined in
Section IV,
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while the following are obvious:

2(10) _ i 0)0)

a0y .

i

—m?a 00,

Substitution of the various derivatives of (3.7} in Eq. (2.4)
results in the following expression for £(---):

P(a {00y _ 2, {0}(0 : 1 o030
Lap)) = g (—m'al) '+ imPyalllo)

4g12 (:Im Z qai,?;(m]

C" g=n+1
g + nr odd

g id
+—[ Y gl —n’

g=n+2
g+ neven

N
£20h ¥ |

g=n+%1
g+ #nodd

0xo
)alyo

Writing
=A,.+iB,,

mift

and noting that g,,, g2, 22, P.,, and P3, are real, we
obtain

aA(O)(U]
25— gL~ AL Pl B
(e
g N
et gngol
C" g=n+1
¢+ n odd
guf &
1 -
+21 T oA
" g=n+2
q +neven
+2P2, 2 qu°"°>] (3.9)
o odd
aB(OJ(UJ
2 gl — B+ mPl A
)
N
_4513[,,, ¥ qA(O)(m}
Ca g=n+1 !
q+ n odd
L1 al
su 2_ 2y ROXO)
+C"L=§+lq(q n*) By
g+ neven
N
+2P%, Y foSq’,(O)], (3.1
g=n+1

¢ + rr odd
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where, as has been noted earlier, only the control functions
P}, and P3, have been retained. Equations (3.9) and (3.10)
are solved by the parameter-stepping method similar to
{3.6).

Case 111.  Simply connected domain in R2 Applications
of the spectral technique to Eq. {2.9) for the generation of
coordinates in a given surface F(x, y, z) =0 requires addi-
tional considerations due to the appearance of the terms n
and R, [11]. The quantity R depends on the function
F(x, y,z)=0 and the value of R/, is computed by using
the formula given in [8, Eq. {4.1)]. On the other hand, the
unit normal vector n is given as

n=(r¢xr,,)/\/G_3,

Thus, proceeding from

r( n)=

we obtain

1 M N M N
4 \/6‘ Z{) Z Z ZU dr:pq Tr+p é) +q(’7)
3r= 5=49Q p=0 g

+ T O T () + T, _ (&) Ty )(n)
+ T (8 Ty (3.11)
where the components of the vector d,,,, defined by

are
A, (/) =2 k) a1 — a 1) a0 k),

with j, &k, / in this order, are the cyclic permutations of
1,2,3
Manipulation of terms in (3.11) finally yields

1 M N
Amf’! Tm T!’! I
1 7C. ,Eo EO (€} Tln)

n= (3.12)

where
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M N
Amn= Z [Z dpq(lp_ml)(lq_n”
0

p=0Lg=

N—n
+ ) dpq(lp—ml)(q+n)}

g=0

M—m N
+ 2 [Z d,(p+m)lg—n|)
p=0 Lg=0

+ i dpq(p+m)(q+n)].
=0

g=

IV. NUMERICAL IMPLEMENTATION

The grid generation equations (Eq. {2.4) or Eq. (2.9))
can be integrated by any of the explicit time or parameter
stepping schemes. For solving Eq. (2.4), we have used the
forward Euler, second-order Adams-Bashforth, and the
fourth-order Runge—Kutta schemes. It has been found that
for the problems of grid generation under consideration
the forward Euler scheme is the scheme of choice. To
demonstrate the trend of error decrement, we chose the
problem of grid generation between two concentric ellipses;
the larger one having semi-major and minor axes twice that
of the smaller. Figure 1 shows the error E defined as

{Ixptt—xpl+ 1yt = yil} (41a)

=

M.
E=Y
) i=0 j

0

[

with the parameter index number ». In this study, the maxi-
mum allowable parameter step as well as the minimum

Time Discretization Schemes
dt=3 E-4(Euler), dt=2.E-4({Adams}, dt=1.5E-4(Runge)

0.040
—— Forward Euler
—— Adams-Bashforth (2nd)

0.030 e QUNGE—Kutta (4th)

Error

0.020¢

0.010%"

0.000 L
0.0 2000.0

4000.0 6000.0 80000  10000.0

ITER

FIG. 1. Compatison of error decrement trends using various time
stepping techniques.
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computational time and effort were found to be with the
forward Euler scheme. Hence, in all other examples, we
have used the forward Euler method for time integration.
The error in surface grid generation is defined by

M N
E=Y ¥ lxyt = x3l+ 1y v+ 2yt — 20
i=0 j=0

(4.1b)

As is shown by Eq. (3.6), the parameter-stepping is
carried out in the spectral space and therefore, it becomes
necessary to obtain the imposed boundary conditions in
terms of the spectral coeflicients. First, the boundary values
have to be written spectrally as

b Concave—Convex Domain
Q.010 T T '

0.0081

0.006% J

Error

0.004

0.002 |

0.000 L
Q.0 20000

40000 60000 8000.0 10000.0

ITER
FIG. 2. (a) Simply connected domain bounded by arbitrary concave

convex curves. (b) Error decrement behavior in the parameter siepping
procedure used in obtaining the coordinates in Fig. 2a.
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ri¢, =% a,T.(¢),

i )= e,T,(),

(4.1¢)
f(* 1! rf)zzdrn Tn(rf),
r(L, 1) =3b,T,(n)
Thus, using (3.1), we arrive at the equations
T aO(=1)"=a,,
YalO e,
! (4.1d)

Y a1y =d,,

"

0)(0
¥ ao =b,
"

This procedure produces an underdetermined problem, viz.,
it involves the solution of 4{M + 1)+ 4(N + 1) scalar equa-
tions for 2{M + 1) x (N + 1) scalar unknowns. In view of
this problem, we adopt a different procedure in which the
spectral coefficients are transformed back to the physical
space (refer to Eq. (4.2a)) and then the boundary condi-
tions are imposed. For the purpose of comparing the
computed coefficients with the coefficients of the under-
determined system we first use the coefficients a™® in
Egs. (4.1d) to calculate a,,, e, d,,, and b,,. Next the trans-
form of Eqgs. {(4.1c) is taken and the calculated coefficients
are denoted as p,,, q,., T,,, and s,,.. The differences

,—Pw ©,.—4q, d,—r.b

ns By — 8y,

are then formed, and it has been found that the absolute
sum of these errors for the whole boundary, e.g.,

M
Z Eam_pml
m=0

is less than 10~ % These small differences are due to the
single precision transforms used to obtain the coefficients.

To summarize the complete numerical procedure, we first
state the discrete Chebyshev transform pair for two-dimen-
sional domains. Refer to [27] for a basic understanding of
the technique. The discrete Chebyshev transform pair based
on the Gauss—Lobatto points for simply connected domains
is

b
Cascade
0.008
0.008 9
8
4 0.004 1
0.002 | -
0.000 . . . "
0.0 2000.0 40000 6000.0 8000.0 10000.0
ITER
FIG. 3. (a) Coordinates generated in a gas turbine rotor biade.

(b) Error decrement behavior inthe parameter stepping procedure used
in obtaining the coordinates in Fig. 3a.

FIG. 4. Coordinates generated between two ellipses. Minor and major
axes ratio of 2:1,
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_ M N :
= Y A0 o ﬂj{;cos MTH,
m=0 n=0 (42a)
=12,  M-1k=12 ., N—-1,
4 Moy o] mm  wkn
41000 —T; c0s— —_— 4,
o MNE,,,E,,J.;, ;Z'ofjfk e S {(4.2b)
where
m=0,1,.,M;n=0.1, .., N,
and
c,=2 if j=00rM,
=1 if 1sjs<M—-1,
&=2 if k=0orN,
=1 if 1€k€N-1.

i o

TRy

y
7
/
e
i=l ﬁﬁ-i;:(&,_,_,_,___
“““‘?%??%ﬂ AT
NS
AN

/7

/

{t

Y

\‘\ < % A
\\\ g

o
e zﬁ'p

b Airfoil
0.030
0020 -
1
£
|
0010 |
0.000 . :
0.0 5000.0 10000.0 15000.0 20000.0
ITER
FIG. 5. (a)Coordinates around a NACA0012 airfoil with an ellipse as

the outer boundary. (b) Error decrement behavior in the parameter
stepping procedure used in obtaining the coordinates in Fig. 5a.
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Here 40X are the discrete spectral coefficients. For doubly
connected regions, one of the coordinates is periodic and,
therefore, a Fourier—Chebyshev expansion has been used. In
any event, one complete iteration uses both Eqs. (4.2a) and
(4.2b); first to solve the discretized equations in the spectral
space and next to impose the boundary conditions in the
physical space.

To start the iteration procedure, we need the initial
variables at the quadrature nodes. In the present problems,
the quadrature nodes taken for the Chebyshev polynomials
are the Gauss-Lobatto points (ie., zeros of the Chebyshev
polynomials

k
§;=cos %, 1, =COS EA—r,
J=Os aM;k=Oy --5N9

b Ellipse~-Circle
0.0
0.06} 4
13
g
5 004 ]
002}
0.00 1 . .
0.0 2000.0 4000.0 8000.0 800C0.0 10000.0
ITER
FIG. 6. (a) Coordinates generated between non-concentric circle and

ellipse. (b) Error decrement behavicr in the parameter stepping procedure
used in obtaining the coordinates in Fig. 6a.
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and for the Fourier—Chebyshev method, the nedes in the
periodic coordinate £ are uniform and given by

Moo N—L

£j= N
Since the boundary values are needed at the quadrature
nodes, the boundary data is first used to fit parametric
spline on each curve, e.g., the B-spline. From this, the initial
grid point coordinates are obtained at the Gauss-Lobatto
points. After this operation, the following steps are
foltowed:

a. Using the boundary point data form an initial guess
for r;; in the domain.
b. Caiculate 4" through Eq. (4.2b).

¢.  Use Eq. (3.6) for obtaining the values of 42/ at the
next parameter level ¢ + Ag.

5‘0",« A )
AR
I
IS
sy

259

d. Find r, in the field using Eq. {4.2a).

e. With the r; of the domain available from step (d},
together with the r;; at the boundary, go to step (b).

f.  Repeat steps (b)-(e) and stop at convergence.

Figures 2a and 3a show the grids for simply connected
regions of arbitrary concave—convex boundary lines and of
a rotor of a gas turbine, Here the Chebyshev polynomials
are used in both the £ and # directions as they are non-peri-
odic in both directions. Figures 2b and 3b show their con-
vergence rates. Figures 4 and 5a—7a show the grid lines for
doubly connected domains, where we have used the Fourier
expansion along the periodic £-coordinate. Figures 5Sb—7b
show respectively the trend of error decrement. In the case
of surface grids shown in Fig. 8a and %a, we have generated
grids only for the simply connected case. Figures 8b and 9b
respectively show the trend of error decrement.

b
Arbitrary body

0.15

Q.10

Q051

0.00_— .

0.0 5000.0 10000.0 15000.0 20000.0

FIG, 7. (a) Coordinates between the inner curve define by x=r cos 3,

y=rsin S, r=045+0.135n3+0.15s5in 583, and the ouier circle x=
2cos ¥, y=2sind (b) Error decrement behavior in the parametet
stepping procedure used in obtaining the coordinates in Fig. 7a.

581/104/1-18

b Surtface Grid (sphere)
0.020
0.015¢
L-El] 0.010
0.005
0.000 ; — " .
0.0 2000.0 4000.0 6000.0 BOO0.O 100000
ITER
FIG. 8. ({a) Coordinates in a patch on the surface of a sphere bounded

by #f12 € 8 < /3 and =/6 < ¢ < 5w/12; 8, $—spherical coordinaies.
{b) Error decrement behavior in the parameter stepping procedure used
in obtaining the coordinates in Fig. 8a.
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e "y
=- L
) L s A D

b
Surface Grid (cylinder)
0.016
0.014
0.012
g 0.010+
i
0.008
0.006 M
0.004 . . . .
0.0 1000.0 20000 300G.0 40000 50000
ITER
FIG. 9. (a) Coordinates on the surface of an elliptic cylinder. (b) Error

decrement behavior in the parameter stepping procedure used in obtaining
the coordinates in Fig. 9a.

All the cases tried here have a converging solution with
da=10"* although the behavior of convergence rate is
different for different geometries (sce Fig. 5b-7b). For
some geometries, the convergence rate shows small wiggles
(Figs. 3b and 9b}; however, in all cases, there is a monotone
reduction of error towards a mean convergence.

Y. CONCLUSIONS

In this paper, the method of “parameter stepping” has
been used to penerate curvilinear coordinates and grid
points by using spectral techniques. With the availability of
this methodology, it will now become possible to investigate
the spectral solution of physical problems, particularly of
the nonlinear fluid flow probiems, in arbitrary domains.
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APPENDIX A

Most of the theory on Chebyshev polynomials is
available in Fox and Parker [12] and Rivlin [13].
A collection of usable formulae on Chebyshev polynomials
is available in Ref [2] and in the papers by Gardner
et al. [14] and Orszag [15]. In this appendix, we have
collected those formulae which are of immediate use in the
derivations of the equations in Section IIL

The Chebyshev polynomials of the first kind of degree »
are denoted by T,(x) in the range —1<x<1 and are
simply given by

T,.(x}=cos un
(A1)
x=cos @,

Direct substitution of (A.l) in the equation given below
shows that 7 (x) are the solutions of the singuiar Sturm-
Liouville problem

d { du 3
—E(pa)+qu—n wu =10,

plx)=(1—x%)"7,
Using the trigonometric expansion of
cos(n+ 1}8 +cos(n—1)0
and (A.1), one easily obtains the recursive formula

T, (x)—2xT,(x)+ T,_,(x)=0, nzl. (A2)
Having Ty(x)=1, T,(x}=x, one can generate Chebyshev
polynomials of any desired degree from (A.2).

Equation (A.2) is valid for n 2 1. To have an equation
valid for » 20, we introduce the guantities c,, and d,, as

follows (cf. [14]):

c,=2, ¢,=1, m=>0,
d,=1, mz0, {A.3)
c,=0, d,=0, m<Q
Thus, (A.2} is rewritten as
z‘xTn(x)zchn+l(x)+dn—lTn—l(x)5 ?'120 (A4)

From (A.1) it is easy to see that

T'(x)=n(l — x2)~ ¥ sin nb. (A.5)
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Thus, using the trigonometric expansion of cos(n + 1)8 and
{A.1) and (A.5), we obtain

(1=x)Ti(x)=n[xT (x)—T,,.(x})], #=0 (A6)
Using (A.2), the other forms are
(1=x} T (x)=n[T, _(x)—xT(x}], n=xl (A7)
=§[T,,,,(x)—T,,+l(x)], nzl  (AS)
Starting from (A.1), we have
T, (x)=cos(n+1)8, T, (x)=cos(n—1)0.
On differentiation with respect to x, we obtain
;::(lx}—Ti‘_‘(lezT,,, n>1. (A.9)
To make (A.9) valid for n =0, we use (A.3) and have
T %) — d" 2T, _\(x)=2T,(x), n=0. (A10)
n+1 —1

Orthogonality. The Chebyshev polynomials {functions)
form an orthogonal basis. That is, the scalar product of
T, (x)and T,(x) with weight w= (1 —x%)""is

(T,(x) T,(x)>,=0, il m#n

To arrive at this result, we start from the integral

J‘n cos mb cos nf df =0 if m#n,
=7 if m=n+#9,
=2x if m=rn=0.

Combining all the three alternatives and noting that the
integrand is an even function, we obtain

r cos mb cos nf a‘0=Ec,,5,,,,,, (A.11)
0

2

where ¢;=2 and ¢,=1 for n 21 (refer to (A.3)}). From
{A.11), we obtain

(T T =] (1=x)7 T, 0) T,fx) di
1
=3 Cubp (A.12)
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which is the orthogonality property of the Chebyshev
functions.

Derivative formulae. Suppose

flx)y= 3 a’T,(x),

n=0

then its mth derivative is

0= T T (x),

n=0
Obviously,

di 2 =T (x E a T (x).

Using (A.10), we obtain

> 12 a,ct™
Y a0 =3 L TR Talo)
nd(m]
* ZT'n—l(x}'
n—1

Equating the coefficients of T,{x) for n = 1, we obtain

—a'™ =2na"" " nzl

(1)
Cp— lam n+1

n—1

(A.13)

Repeated application of (A.13) for each m, yields, e.g.,

cpatl’=2 Z pal, nz0, (A.14)
p=n+1
p+nodd
c,aP= % plp’-n’Jal, nz0. (A15)
p=n+2
p+neven
APPENDIX B: NOMENCLATURE
a2} Spectral coefficients in the continuous represen-
tation.
il Spectral coefficients in the discrete representa-
tion.
c Constant introduced in Eq. (2.2)
C, 2if n=0, otherwise 1.
g det(gy
gis 8’ Covariant and contravariant metric coefficients
G, 211 12— {g,2)%, appearing in surface theory.
kY + k() Twice the means curvature of a surface

defined as x* = const.
&z Differential operator; Eqs. (2.4), (2.9).
n* Unit surface normal vector on x" = const.
P} or P}, Control functions.
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P* Control functions formed by a linear combina-
tion of P; (2.5b); k=1,2,3,0rk=1,2.
R K+ KB G,
r (x, y, ).
| 9 Coordinates x, y,., z; at grid location j, k.
r, orfox',x ;= 0%r/0x' 0x', etc.
I Or/OE, x = D1/0E On, etc.
x' 31> curvilinear coordinates.
x*° Curvilinear coordinates in a surface.
Note. In Section II, summation convention on repeated

upper and lower indices has been used.
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